Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328229

RESUMO

Laminar electrode arrays allow simultaneous recording of activity of many cortical neurons and assignment to correct layers using current source density (CSD) analyses. Electrode arrays with 100-micron contact spacing can estimate borders between layer 4 versus superficial or deep layers, but in macaque primary visual cortex (V1) there are far more layers, such as 4A which is only 50-100 microns thick. Neuropixels electrode arrays have 20-micron spacing, and thus could potentially discern thinner layers and more precisely identify laminar borders. Here we show that CSD signals lack the spatial resolution required to take advantage of high density Neuropixels arrays and describe the development of approaches based on higher resolution electrical signals and analyses, including spike waveforms and spatial spread, unit density, high-frequency action potential (AP) power spectrum, temporal power change, and coherence spectrum, that afford far higher resolution of laminar distinctions, including the ability to precisely detect the borders of even the thinnest layers of V1.

2.
Oncogene ; 43(12): 899-917, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317006

RESUMO

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/ß-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.


Assuntos
Anexina A2 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Via de Sinalização Wnt/genética , Neoplasias Esofágicas/patologia , Proliferação de Células/genética , Acetiltransferases/metabolismo , Epigênese Genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Histona Acetiltransferases/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Anexina A2/metabolismo
3.
Acta Pharmacol Sin ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228910

RESUMO

Paclitaxel resistance is associated with a poor prognosis in non-small cell lung cancer (NSCLC) patients, and currently, there is no promising drug for paclitaxel resistance. In this study, we investigated the molecular mechanisms underlying the chemoresistance in human NSCLC-derived cell lines. We constructed paclitaxel-resistant NSCLC cell lines (A549/PR and H460/PR) by long-term exposure to paclitaxel. We found that triptolide, a diterpenoid epoxide isolated from the Chinese medicinal herb Tripterygium wilfordii Hook F, effectively enhanced the sensitivity of paclitaxel-resistant cells to paclitaxel by reducing ABCB1 expression in vivo and in vitro. Through high-throughput sequencing, we identified the SHH-initiated Hedgehog signaling pathway playing an important role in this process. We demonstrated that triptolide directly bound to HNF1A, one of the transcription factors of SHH, and inhibited HNF1A/SHH expression, ensuing in attenuation of Hedgehog signaling. In NSCLC tumor tissue microarrays and cancer network databases, we found a positive correlation between HNF1A and SHH expression. Our results illuminate a novel molecular mechanism through which triptolide targets and inhibits HNF1A, thereby impeding the activation of the Hedgehog signaling pathway and reducing the expression of ABCB1. This study suggests the potential clinical application of triptolide and provides promising prospects in targeting the HNF1A/SHH pathway as a therapeutic strategy for NSCLC patients with paclitaxel resistance. Schematic diagram showing that triptolide overcomes paclitaxel resistance by mediating inhibition of the HNF1A/SHH/ABCB1 axis.

4.
Mol Cell Biochem ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041756

RESUMO

Since invasive cancer is associated with poor clinical outcomes, exploring the molecular mechanism underlying LUAD progression is crucial to improve the prognosis of patients with advanced disease. Herein, we found that MYO16-AS1 is expressed mainly in lung tissue but is notably downregulated in LUAD tissues. Overexpression of MYO16-AS1 inhibited the migration and invasion of LUAD cells. Mechanistic studies indicated that H3K27Ac modification mediated MYO16-AS1 transcription. Furthermore, we found that MYO16-AS1 competitively bound to the IGF2BP3 protein and in turn reduced IGF2BP3 protein binding to HK2 mRNA, decreasing HK2 mRNA stability and inhibiting glucose metabolism reprogramming and LUAD cell invasion in vitro and in vivo. The finding that the MYO16-AS1/IGF2BP3-mediated glucose metabolism reprogramming mechanism regulates HK2 expression provides novel insight into the process of LUAD invasion and suggests that MYO16-AS1 may be a therapeutic target for LUAD.

5.
Respir Res ; 24(1): 276, 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37953225

RESUMO

BACKGROUND: Lung cancer represents a significant public health issue in China, given its high incidence and mortality rates. Circular RNAs (circRNAs) have been recently proposed to participate in the development and progression of tumors. Nevertheless, their particular roles in the pathogenesis of lung adenocarcinoma (LUAD), the tumor microenvironment (TME), and the underlying molecular mechanisms are still not well understood. METHODS: High-throughput sequencing was used to analyze the circRNAs expression profiles in 7 pairs of human LUAD tissues. shRNA was used to knockdown the YAP1 and FGB genes. RNA sequencing and RT-qPCR were performed to classify the regulatory effects of circ_16601 in LUAD cells. The progression effect of circ_16601 on lung cancer was investigated in vitro and in vivo. RESULTS: The circ_16601 is significantly elevated in LUAD tissues compared to adjacent normal lung tissues, and its high expression is positively associated with poor prognosis in LUAD patients. Additionally, circ_16601 overexpression promotes LUAD cell proliferation in vitro and increases xenograft tissue growth in mice in vivo; circ_16601 also could recruit fibroblasts to cancer associate fibroblasts. Mechanistically, circ_16601 can directly bind to miR-5580-5p, preventing its ability to degrade FGB mRNA and enhancing its stability. Subsequently, circ_16601 promotes the activation of the Hippo pathway in a YAP1-dependent manner, leading to LUAD progression. CONCLUSIONS: Our findings shed valuable insights into the regulatory role of circ_16601 in LUAD progression and highlight its potential as a diagnostic and therapeutic target in LUAD. Overall, this study provides theoretical support to improve the prognosis and quality of life of patients suffering from this devastating disease.


Assuntos
Adenocarcinoma de Pulmão , Via de Sinalização Hippo , Neoplasias Pulmonares , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Fibrinogênio , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Circular/genética , Microambiente Tumoral
6.
Cancer Sci ; 114(9): 3608-3622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417427

RESUMO

Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , RNA Mensageiro/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Nucleares/genética
7.
Neuroimage ; 271: 120019, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36914108

RESUMO

Studies of resting-state functional connectivity (rsFC) have provided rich insights into the structures and functions of the human brain. However, most rsFC studies have focused on large-scale brain connectivity. To explore rsFC at a finer scale, we used intrinsic signal optical imaging to image the ongoing activity of the anesthetized macaque visual cortex. Differential signals from functional domains were used to quantify network-specific fluctuations. In 30-60 min resting-state imaging, a series of coherent activation patterns were observed in all three visual areas we examined (V1, V2, and V4). These patterns matched the known functional maps (ocular dominance, orientation, color) obtained in visual stimulation conditions. These functional connectivity (FC) networks fluctuated independently over time and exhibited similar temporal characteristics. Coherent fluctuations, however, were observed from orientation FC networks in different areas and even across two hemispheres. Thus, FC in the macaque visual cortex was fully mapped both on a fine scale and over a long range. Hemodynamic signals can be used to explore mesoscale rsFC in a submillimeter resolution.


Assuntos
Conectoma , Macaca fascicularis , Descanso , Córtex Visual , Macaca fascicularis/fisiologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia , Córtex Visual/ultraestrutura , Masculino , Animais , Descanso/fisiologia , Estimulação Luminosa , Imagem Óptica , Hemodinâmica
8.
Int J Comput Assist Radiol Surg ; 18(6): 981-988, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36961613

RESUMO

PURPOSE: Hyperspectral imaging has the potential to improve intraoperative decision making if tissue characterisation is performed in real-time and with high-resolution. Hyperspectral snapshot mosaic sensors offer a promising approach due to their fast acquisition speed and compact size. However, a demosaicking algorithm is required to fully recover the spatial and spectral information of the snapshot images. Most state-of-the-art demosaicking algorithms require ground-truth training data with paired snapshot and high-resolution hyperspectral images, but such imagery pairs with the exact same scene are physically impossible to acquire in intraoperative settings. In this work, we present a fully unsupervised hyperspectral image demosaicking algorithm which only requires exemplar snapshot images for training purposes. METHODS: We regard hyperspectral demosaicking as an ill-posed linear inverse problem which we solve using a deep neural network. We take advantage of the spectral correlation occurring in natural scenes to design a novel inter spectral band regularisation term based on spatial gradient consistency. By combining our proposed term with standard regularisation techniques and exploiting a standard data fidelity term, we obtain an unsupervised loss function for training deep neural networks, which allows us to achieve real-time hyperspectral image demosaicking. RESULTS: Quantitative results on hyperspetral image datasets show that our unsupervised demosaicking approach can achieve similar performance to its supervised counter-part, and significantly outperform linear demosaicking. A qualitative user study on real snapshot hyperspectral surgical images confirms the results from the quantitative analysis. CONCLUSION: Our results suggest that the proposed unsupervised algorithm can achieve promising hyperspectral demosaicking in real-time thus advancing the suitability of the modality for intraoperative use.


Assuntos
Algoritmos , Aprendizado de Máquina não Supervisionado , Humanos , Diagnóstico por Imagem , Redes Neurais de Computação , Pesquisa Qualitativa
9.
Nat Commun ; 13(1): 6344, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284139

RESUMO

Studies of color perception have led to mechanistic models of how cone-opponent signals from retinal ganglion cells are integrated to generate color appearance. But it is unknown how this hypothesized integration occurs in the brain. Here we show that cone-opponent signals transmitted from retina to primary visual cortex (V1) are integrated through highly organized circuits within V1 to implement the color opponent interactions required for color appearance. Combining intrinsic signal optical imaging (ISI) and 2-photon calcium imaging (2PCI) at single cell resolution, we demonstrate cone-opponent functional domains (COFDs) that combine L/M cone-opponent and S/L + M cone-opponent signals following the rules predicted from psychophysical studies of color perception. These give rise to an orderly organization of hue preferences of the neurons within the COFDs and the generation of hue "pinwheels". Thus, spatially organized neural circuits mediate an orderly transition from cone-opponency to color appearance that begins in V1.


Assuntos
Cálcio , Córtex Visual Primário , Células Fotorreceptoras Retinianas Cones/fisiologia , Percepção de Cores/fisiologia , Retina/fisiologia , Estimulação Luminosa/métodos , Cor
10.
Transl Lung Cancer Res ; 11(5): 802-816, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693277

RESUMO

Background: The mutation rate of the tumor protein P53 (TP53) has been reported to be greater than 50% in non-small cell lung cancer (NSCLC), and gain-of-function (GOF) mutations in unfolded P53 (TP53R175H and TP53Y220C) have been associated with poor prognosis. However, the best treatment for patients with NSCLC harboring unfolded mutant P53 (mutp53) remains unclear. Triptolide is a natural compound derived from Tripterygium wilfordii that has shown a strong antitumor effect in a variety of cancers. Our study aimed to explore the GOF mutations in unfolded mutp53 (TP53R175H and TP53Y220C) and to clarify the molecular mechanisms by which triptolide regulates the degradation of unfolded mutp53 proteins in NSCLC. Methods: Two unfolded proteins harboring TP53R175H and TP53Y220C mutations were selected to explore their functions in NSCLC progression. NCI-H1299 cells (TP53-null) were transfected with wild-type TP53 (TP53WT), TP53R175H, or TP53Y220C genes and treated with triptolide or a vehicle. Wound healing and transwell assays were performed to measure cell migration and invasion in vitro. Lung metastasis models were constructed through tail vein injection of mutant cells into BALB/c nude mice to evaluate the effect of triptolide on metastasis in vivo. Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunoprecipitation, and dual-luciferase reporter assays were performed to explore the relevant molecular mechanisms. Results: Our study revealed that triptolide treatment reduced TP53R175H levels and that the TP53Y220C mutation enhanced the invasion and migration of NCI-H1299 cells. Mechanistically, triptolide promoted TP53R175H and TP53Y220C protein proteasomal degradation mediated through the E3 ligase murine double minute 2 (MDM2) by directly interacting with heat shock protein 70 (HSP70). Moreover, by upregulating HSP70 transcription, triptolide contributed to the protein degradation of the GOF mutp53. Conclusions: Our study reports, for the first time, the mechanism underlying triptolide-regulated protein degradation of TP53R175H or TP53Y220C, which offers new insight into developing a better therapeutic strategy for patients with NSCLC who express the unfolded mutp53 GOF protein.

11.
Front Oncol ; 12: 868664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463320

RESUMO

The ability for cells to harness alternative splicing enables them to diversify their proteome in order to carry out complex biological functions and adapt to external and internal stimuli. The spliceosome is the multiprotein-RNA complex charged with the intricate task of alternative splicing. Aberrant splicing can arise from abnormal spliceosomes or splicing factors and drive cancer development and progression. This review will provide an overview of the alternative splicing process and aberrant splicing in cancer, with a focus on serine/arginine-rich (SR) proteins and their recently reported roles in cancer development and progression and beyond. Recent mapping of the spliceosome, its associated splicing factors, and their relationship to cancer have opened the door to novel therapeutic approaches that capitalize on the widespread influence of alternative splicing. We conclude by discussing small molecule inhibitors of the spliceosome that have been identified in an evolving era of cancer treatment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38013723

RESUMO

Hyperspectral imaging is one of the most promising techniques for intraoperative tissue characterisation. Snapshot mosaic cameras, which can capture hyperspectral data in a single exposure, have the potential to make a real-time hyperspectral imaging system for surgical decision-making possible. However, optimal exploitation of the captured data requires solving an ill-posed demosaicking problem and applying additional spectral corrections. In this work, we propose a supervised learning-based image demosaicking algorithm for snapshot hyperspectral images. Due to the lack of publicly available medical images acquired with snapshot mosaic cameras, a synthetic image generation approach is proposed to simulate snapshot images from existing medical image datasets captured by high-resolution, but slow, hyperspectral imaging devices. Image reconstruction is achieved using convolutional neural networks for hyperspectral image super-resolution, followed by spectral correction using a sensor-specific calibration matrix. The results are evaluated both quantitatively and qualitatively, showing clear improvements in image quality compared to a baseline demosaicking method using linear interpolation. Moreover, the fast processing time of 45 ms of our algorithm to obtain super-resolved RGB or oxygenation saturation maps per image for a state-of-the-art snapshot mosaic camera demonstrates the potential for its seamless integration into real-time surgical hyperspectral imaging applications.

13.
J Thorac Dis ; 13(10): 5964-5972, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34795944

RESUMO

BACKGROUND: Clinical features of epidermal growth factor receptor (EGFR) mutations have been commonly recognized in variant cancers. The role of EGFR mutations in non-small cell lung cancer (NSCLC) has spurred research and drug development efforts. However, there are still mutations that have not been widely reported, and their influences on NSCLC have not been fully elucidated; EGFR G873R mutation is just one of them. The aim of this study was to investigate the correlation between EGFR G873R mutation and the prognosis of chemotherapy in NSCLC. METHODS: A total of 54 patients with NSCLC were enrolled in this study. Immunohistochemical staining was used to detect the expression of EGFR. A DNA extraction kit (GeneRead DNA FFPE Kit) was used to extract total DNA from resected cancer tissues. Genomic DNA targets were amplified by polymerase chain reaction (PCR), and then the amplicons were purified and sequenced. Statistical methods were performed to detect the relationship between EGFR G873R mutation and various clinicopathological features and the effect of EGFR G873R mutation on the prognosis of chemotherapy. RESULTS: EGFR G873R mutation did not show statistical significance, with EGFR high expression identified in 30 cases (P>0.05). Patients with EGFR G873R mutation had a significantly favorable prognosis of docetaxel (P=0.032), and for patients treated with docetaxel, EGFR G873R mutation was significantly correlated with better 5-year disease-free survival (DFS; P=0.026) and overall survival (OS; P=0.026). However, there was no statistical significance found between EGFR G873R mutation and the prognosis of vinorelbine (P>0.05), and for patients treated with vinorelbine, EGFR G873R mutation had no statistical significance with 5-year DFS (P>0.05) and OS (P>0.05). CONCLUSIONS: EGFR G873R mutation was remarkably correlated with the prognosis of docetaxel in NSCLC, which indicates that EGFR G873R may be employed as a promising biomarker to identify individuals with better prognosis of docetaxel and as an antitumor target for NSCLC treatment.

14.
Carcinogenesis ; 42(1): 136-147, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32710611

RESUMO

Hexavalent chromium [Cr(VI)] is a potent human lung carcinogen. Multiple mechanisms have been proposed that contribute to Cr(VI)-induced lung carcinogenesis including oxidative stress, DNA damage, genomic instability and epigenetic modulation. However, the molecular mechanisms and pathways mediating Cr(VI) carcinogenicity have not been fully elucidated. Hedgehog (Hh) signaling is a key pathway that plays important roles in the formation of multiple tissues during embryogenesis and in the maintenance of stem cell populations in adults. Dysregulation of Hh signaling pathway has been reported in many human cancers. Here, we report a drastic reduction in both mRNA and protein levels of hedgehog-interacting protein (HHIP), a downstream target and a negative regulator of Hh signaling, in Cr(VI)-transformed cells. These findings point to a potential role of Hh signaling in Cr(VI)-induced malignant transformation and lung carcinogenesis. Cr(VI)-transformed cells exhibited DNA hypermethylation and silencing histone marks in the promoter region of HHIP, indicating that an epigenetic mechanism mediates Cr(VI)-induced silencing of HHIP. In addition, the major targets of Hh signaling (GLI1-3 and PTCH1) were significantly increased in Cr(VI)-transformed cells, suggesting an aberrant activation of Hh signaling in these cells. Moreover, ectopically expressing HHIP not only suppressed Hh signaling but also inhibited cell proliferation and anchorage-independent growth in Cr(VI)-transformed cells. In conclusion, these findings establish a novel regulatory mechanism underlying Cr(VI)-induced lung carcinogenesis and provide new insights for developing a better diagnostic and prognostic strategy for Cr(VI)-related human lung cancer.


Assuntos
Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , Cromo/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/induzido quimicamente , Glicoproteínas de Membrana/genética , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Inativação Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Transdução de Sinais/efeitos dos fármacos
15.
Thorac Cancer ; 12(2): 181-193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200540

RESUMO

BACKGROUND: To distinguish early-stage lung cancer from benign disease in pulmonary nodules, especially lesions with ground-glass opacity (GGO), we assessed gene mutations of ctDNA in peripheral blood using targeted next-generation sequencing (NGS). METHODS: Single pulmonary nodule patients without mediastinal lymph nodes and symptoms that were hard to diagnose by chest CT and lung cancer biomarker measurement in multiple medical centers were enrolled into the study. All patients accepted minimally invasive surgery but refused preoperative biopsy. Gene mutations in preoperative blood samples were detected by targeted NGS. Mutations with significant differences between lung tumors and benign lesions, as grouped by postoperative pathology, were screened. Protein expression was determined by immunohistochemistry. Highly expressed genes were selected as biomarkers to verify the mutations in peripheral blood. RESULTS: In the training set, the RNF213, KMT2D, CSMD3 and LRP1B genes were mutated more frequently in early-stage lung cancer (27 cases) than in benign nodules (15 cases) (P < 0.05). High expression of the RNF213 gene in lung cancers and low expression in benign diseases were seen by immunohistochemistry. The RNF213 gene was mutated in 25% of lung cancer samples in the validation set of 28 samples and showed high specificity (100%). In GGO patients, RNF213 was mutated more frequently in early-stage lung cancer compared to benign diseases (P < 0.05). CONCLUSIONS: RNF213 gene mutations were observed more frequently in early-stage lung cancer, but not in benign nodules. Mutation of the RNF213 gene in peripheral blood may be a high specificity biomarker for the assisted early diagnosis of lung cancer in pulmonary nodules. KEY POINTS: Significant findings of the study: In peripheral venous blood and tumor tissue, RNF213 gene mutated more frequently in lung cancer than benign pulmonary nodules. WHAT THIS STUDY ADDS: Detection mutation of the RNF213 gene in peripheral blood may be a high specificity method for the assisted early diagnosis of lung cancer in pulmonary nodules.


Assuntos
Adenosina Trifosfatases/genética , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Nódulos Pulmonares Múltiplos/genética , Mutação , Ubiquitina-Proteína Ligases/genética , Adenosina Trifosfatases/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Nódulos Pulmonares Múltiplos/metabolismo , Nódulos Pulmonares Múltiplos/patologia , Ubiquitina-Proteína Ligases/metabolismo
16.
Int J Comput Assist Radiol Surg ; 15(9): 1445-1455, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32676869

RESUMO

PURPOSE: Management of vestibular schwannoma (VS) is based on tumour size as observed on T1 MRI scans with contrast agent injection. The current clinical practice is to measure the diameter of the tumour in its largest dimension. It has been shown that volumetric measurement is more accurate and more reliable as a measure of VS size. The reference approach to achieve such volumetry is to manually segment the tumour, which is a time intensive task. We suggest that semi-automated segmentation may be a clinically applicable solution to this problem and that it could replace linear measurements as the clinical standard. METHODS: Using high-quality software available for academic purposes, we ran a comparative study of manual versus semi-automated segmentation of VS on MRI with 5 clinicians and scientists. We gathered both quantitative and qualitative data to compare the two approaches; including segmentation time, segmentation effort and segmentation accuracy. RESULTS: We found that the selected semi-automated segmentation approach is significantly faster (167 s vs 479 s, [Formula: see text]), less temporally and physically demanding and has approximately equal performance when compared with manual segmentation, with some improvements in accuracy. There were some limitations, including algorithmic unpredictability and error, which produced more frustration and increased mental effort in comparison with manual segmentation. CONCLUSION: We suggest that semi-automated segmentation could be applied clinically for volumetric measurement of VS on MRI. In future, the generic software could be refined for use specifically for VS segmentation, thereby improving accuracy.


Assuntos
Diagnóstico por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurilemoma/diagnóstico por imagem , Neuroma Acústico/diagnóstico por imagem , Reconhecimento Automatizado de Padrão , Algoritmos , Automação , Meios de Contraste/farmacologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neurilemoma/patologia , Neuroimagem , Neuroma Acústico/patologia , Reprodutibilidade dos Testes , Software
17.
Science ; 364(6447): 1275-1279, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31249057

RESUMO

Previous studies support the textbook model that shape and color are extracted by distinct neurons in primate primary visual cortex (V1). However, rigorous testing of this model requires sampling a larger stimulus space than previously possible. We used stable GCaMP6f expression and two-photon calcium imaging to probe a very large spatial and chromatic visual stimulus space and map functional microarchitecture of thousands of neurons with single-cell resolution. Notable proportions of V1 neurons strongly preferred equiluminant color over achromatic stimuli and were also orientation selective, indicating that orientation and color in V1 are mutually processed by overlapping circuits. Single neurons could precisely and unambiguously code for both color and orientation. Further analyses revealed systematic spatial relationships between color tuning, orientation selectivity, and cytochrome oxidase histology.


Assuntos
Percepção de Cores/fisiologia , Orientação/fisiologia , Comportamento Espacial/fisiologia , Córtex Visual/fisiologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Macaca fascicularis , Neuroimagem , Neurônios , Córtex Visual/ultraestrutura
18.
Langmuir ; 35(8): 2917-2924, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30715890

RESUMO

Numerical simulation is performed for sessile droplet spreading and penetration on porous surfaces in this study. The volume of the fluid model is used to accurately track the droplet deformation, and the pressure implicit split operator algorithm is presented to calculate the coupling of the droplet pressure and velocity. The effects of droplet characteristics, porous media characteristics, and the wettability of liquid/porous media on sessile droplet spreading and permeation are investigated in detail. The studied problem can be characterized by four control parameters: the Bond number, Darcy number, static equilibrium contact angle, and ratio between the initial diameter of the droplet and the particle diameter in the porous substrate. The numerical simulations show that droplet spreading and penetration are competitive with each other and dependent on the above four dimensionless parameters. The results obtained in this work are of benefit to provide deep insights into the dynamic behavior of sessile droplet on porous substrates.

19.
J Neurosci ; 39(1): 78-95, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30377226

RESUMO

The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs. Here, we used a molecular/circuit approach in both sexes to address these issues. In mice, we identify the transcription factor Satb2 (special AT-rich sequence-binding protein 2) as a selective marker for three RGC types: On-Off DSGCs encoding motion in either the anterior or posterior direction, a newly identified type of Off-DSGC, and an Off-sustained RGC type. In rabbits, we find that expression of Satb2 is conserved in On-Off DSGCs; however, it has evolved to include On-Off DSGCs encoding upward and downward motion in addition to anterior and posterior motion. Next, we show that macaque RGCs express Satb2 most likely in a single type. We used rabies virus-based circuit-mapping tools to reveal the identity of macaque Satb2-RGCs and discovered that their dendritic arbors are relatively large and monostratified. Together, these data indicate Satb2-expressing On-Off DSGCs are likely not present in the primate retina. Moreover, if DSGCs are present in the primate retina, it is unlikely that they express Satb2.SIGNIFICANCE STATEMENT The ability to detect object motion is a fundamental feature of almost all visual systems. Here, we identify a novel marker for retinal ganglion cells encoding directional motion that is evolutionarily conserved in mice and rabbits, but not in primates. We show in macaque monkeys that retinal ganglion cells (RGCs) that express this marker comprise a single type and are morphologically distinct from mouse and rabbit direction-selective RGCs. Our findings indicate that On-Off direction-selective retinal neurons may have evolutionarily diverged in primates and more generally provide novel insight into the identity and organization of primate parallel visual pathways.


Assuntos
Impressões Digitais de DNA , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Animais , Fenômenos Eletrofisiológicos/fisiologia , Feminino , Macaca , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Percepção de Movimento/fisiologia , Primatas , Coelhos , Retina/fisiologia , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
20.
Cereb Cortex ; 29(2): 666-679, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329408

RESUMO

Binocular disparity information is an important source of 3D perception. Neurons sensitive to binocular disparity are found in almost all major visual areas in nonhuman primates. In area V4, disparity processes are suggested for the purposes of 3D-shape representation and fine disparity perception. However, whether neurons in V4 are sensitive to disparity-defined edges used in shape representation is not clear. Additionally, a functional organization for disparity edges has not been demonstrated so far. With intrinsic signal optical imaging, we studied functional organization for disparity edges in the monkey visual areas V1, V2, and V4. We found that there is an orientation map in V4 activated by edges purely defined by binocular disparity. This map is consistent with the orientation map obtained with regular luminance-defined edges, indicating a cue-invariant edge representation in this area. In contrast, such a map is much weaker in V2 and totally absent in V1. These findings reveal a hierarchical processing of 3D shape along the ventral pathway and the important role that V4 plays in shape-from-disparity detection.


Assuntos
Mapeamento Encefálico/métodos , Orientação/fisiologia , Estimulação Luminosa/métodos , Disparidade Visual/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Animais , Macaca mulatta , Masculino , Imagem Óptica/métodos , Córtex Visual/química , Vias Visuais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...